First News
Volume:7, Number:28
First News ad
First News completed 350 issues and seven years of publication on July 2. We thank our readers, contributors, patrons and well-wishers for their continued support
Living
THIS WEEK

Ice is Breaking

| Mahmuda Nazneen |

Antarctica has lost ice shelves before, but not one as enormous as Larsen C Ice Shelf that gets scientists worried about what happens next

British scientists have recently announced a disturbing finding - a crack in the Larsen C ice shelf in the Antarctic Peninsula had dramatically accelerated its spread, increasing 11 miles in length in the space of a month. This means the floating ice shelf, which is nearly as big as Scotland and the fourth largest of its kind in Antarctica, is poised to break off a piece nearly 2,000 square miles in size, or over 10 percent of its total area. An ice island the size of US state Delware would then be afloat in the Southern Ocean.

There is uncertainty in the scientific world about what would happen next. On the one hand, the researchers with Project Midas, who announced the growth of the rift, have published research suggesting that, in their words, it "presents a considerable risk to the stability of the Larsen C Ice Shelf." If they are right, it is hard to understate how big a deal it is. Antarctica has lost ice shelves before, but not one so enormous.

Not only would a loss of Larsen C change the map of the Earth itself; the shelf holds back glaciers capable of contributing about 4 inches of global sea level rise over time. Other analyses have suggested that most of the ice that would be lost is so-called "passive ice" that does not play a key role in holding the glaciers behind the shelf in place. And some scientists have expressed skepticism about whether what is happening at Larsen C is "cause for alarm." Time, ultimately, will show who is right. In the meantime, scientists are very mindful that what is happening to Larsen C could be part of a broader pattern for ice shelves both globally and on the Antarctic Peninsula - including Larsen A, which collapsed in 1995, and most of all Larsen B. Much of Larsen B, located just north of C on the other side of a peninsula, collapsed dramatically in 2002 - and scientists have shown that this is probably not something that has happened in the last 12,000 years or even, perhaps, in more than 100,000 years, or since the last interglacial event.

What is more, the collapse followed closely upon a large break in 1995, a possible analogue for what is now happening to its southern cousin. Larsen C has also apparently been in place for a very long time. And whether or not the pending loss of its enormous iceberg would ignite a fast retreat, researchers agree the event will bring it down to a size smaller than anything humans have observed before. Indeed, whether the retreat is slow or fast, a number of scientists have also documented that Larsen C is changing in a way suggestive of a weakening due to a warming climate. In all ice shelves, ice flows slowly from ENVIRONMENT Living Mahmuda Nazneen inland glaciers out through the shelf towards the sea. But recently, the flow rate at the northern sector of Larsen C has sped up, noted a 2011 scientific paper by University of California at Irvine geoscientist Eric Rignot and his colleagues.

Larsen C is also very slowly lowering in the water. This is happening because the ice that comprises the shelf is getting thinner, whether due to melting from above or from below. The thinning process is slow enough that it would not result in any sudden loss of the ice shelf, but it is still another sign of weakening. The striking thing is that all of this is occurring, because it is farther south along the Antarctic Peninsula, and Larsen C is in a colder place than the other ice shelves that have already collapsed. Scientists have suggested that there is a kind of threshold in annual temperatures for where ice shelves cease to be feasible: a temperature above minus-90 C, averaged annually. Larsen C turns out to be right at the cutoff for this to happen.

So with all of that in mind, what happens next? Let us start with the argument from the researchers affiliated or working with Project MIDAS, who do think this one break could destabilize the shelf, and liken it to what happened with the Larsen B ice shelf nearby. Their model of the ice shelf suggests that its front, facing the ocean, could remain in a partly unstable state after the break and lose considerably more ice afterward. The reason, they say, is that that break will remove regions of ice that were more stable because in these areas, the ice was subject to offsetting stresses and counter-stresses that had the effect of hemming it in and keeping it in place. But if some of these ice regions are gone, the argument goes, that would leave behind ice whose main tendency is to flow outward, toward the sea. In addition to these balancing stresses near its front, the ice shelf also contains what scientists call a "compressive arch," which you might think of as a line across the shelf where the stresses on the ice switch from causing it to be compressed, to causing it to stretch outward. This is further inland, but if that area is breached, the ice shelf is expected to collapse. At present, it looks like the break will cut through some of the arch, but not all of it.

But despite such debates, other researchers remain unsure just how badly the breakup will damage the larger shelf. A recent study in Nature Climate Change, however, found that the calving event would largely remove "passive ice" from Larsen C, ice that is not doing a great deal of work to hold glaciers back, and so will be "unlikely to instantly produce much dynamic change." Granted, that study agreed that the remaining ice shelf will have a concave shape, just as Larsen A and B did before they collapsed.

If scientists are hedging a bit about what happens next at Larsen C, perhaps that should not be surprising in light of the fact that we are about to see a rare event. Moreover, it is one whose precise effect on the shelf ultimately depends on incompletely understood and highly complex processes of ice fracture - one that the models may or may not be able to capture.

Share With:

House No. 10/22 (2nd floor), Iqbal Road, Mohammadpur, Dhaka-1207 Telephone: 88-02-9185124, 01712193344 E-mail: firstnews2010@gmail.com

© 2015 First News. All rights reserved